MATH 245 S21, Exam 3 Questions

(60 minutes, open book, open notes)

1. Question 1 is just instructions; this is a weird requirement of Gradescope.
2. Question 2 asks for your favorite different real numbers a, b, c, and defines sets $S=\{a, b, c\}$ and $T=\{a+b, a+c\}$.
3. Let S, T be as defined in Question 2, and $R=\left\{x \in \mathbb{R}: 1<x^{2} \leq 10\right\}$. Prove or disprove that $S \subseteq R \cup T$.
4. Let S, T be as defined in Question 2. (i) Find any nonempty $R_{1} \subseteq S \Delta T$; (ii) Find any nonempty $R_{2} \subseteq S \times T$; and (iii) Find any partition of $S \times T$.
5. Let S, T be as defined in Question 2. Consider relation R on $S \cup T$ given by $R=$ $\{(x, y): x \geq|y-1|\}$. Draw this relation as a digraph, and determine whether or not it is antisymmetric.
6. Let S, T be as defined in Question 2. Find a relation R on $S \cup T$ that is symmetric, not reflexive, and not trichotomous, but where $\left.R\right|_{T}$ is reflexive and trichotomous. Give R both as a set and as a digraph.
7. This problem no longer uses S, T from Question 2. Prove or disprove: For all sets A, B, C, we must have $B \cap C \subseteq(A \backslash B) \Delta C$.
8. This problem no longer uses S, T from Question 2. Prove or disprove: For all sets A, B, we must have $2^{A} \Delta 2^{(A \Delta B)}=2^{B}$.
